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Abstract of Dissertation

Removal of Polymer Coatings with Supercritical Carbon Dioxide

This work invedigates the use of supercritica fluids, and carbon dioxide in
particular, for the remova of polymer codings. Research into new supercritica fluid
goplications is nearly dways based on a trid and error approach, and frequently requires
evauating each operation on a case-by-case bass A dggnificant improvement in this
approach is accomplished with the development of a framework in which polymer-CO2
interactions can be evaluated and the number of experimentd trias reduced.

The basc modd developed is built upon the three-component solubility parameter
(HSP) concept, which is widdly used in the coaings indudry to ad in the sdection of
solvents.  Temperature and pressure dependent HSP vaues have been develop for

supercriticl  COp, usng a methodology extendable to other supercriticd  fluids

Equations were dso developed to caculate HSP's for cosolvents and polymers.  With the
solvent, cosolvent, and polymer thus fully characterized in terms of the HSP vdues, the
gydems ae then andyzed in tems of the like and unlike (solvent/polymer,
cosolvent/polymer, and solvent/cosolvent) binary pairs.  In addition to this dudy,
congderation of gspecific interactions, such as Lewis acidbase interactions between the
solvent and polymer or between the cosolvent and polymer are examined for their role in

determining a favorable (polymer coating removal) result.



The modd was tested on two red-world goplications involving poly(methyl
methacrylate) (PMMA) and polycarbonate (PC) coatings. Severa organic liquids were
evauaed as cosolvents, including a least one example of a non-polar fluid, a Lewis acid,
and a Lewis base. Reaults of this study found the following interactions, listed in order of
importance in the remova of polymer coatings, to be (1) specific interactions between the

solvent and polymer, in the case of PMMA and CO», or specific interactions between the
cosolvent and polymer, in the case of PC and COp, (2) wesken polymer/polymer

interactions as a result of polymer swdling and subsequent lowering of the polymer HSP
vaues, (3) specific interactions between the solvent and cosolvent are not necessary and
in the case of gpecific interactions between the cosolvent and polymer, may be

undesirable.
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